
becauseR is also a constant vector with respect to the coor-
dinate systemS1 fixed on the body. Combining~7! and ~8!
we obtain

v13R5v13r12v23r2 ~9!

or, inasmuch asR5r12r2 ,

~v22v1!3r250. ~10!

Since P is any point of the rigid body,r2 is an arbitrary

vector that can be freely changed without affecting eitherv1

or v2 . As an immediate consequencev25v1 , and the
proof is complete.

a!Electronic mail: nivaldo@if.uff.br
1H. Goldstein, Classical Mechanics~Addison–Wesley, Reading, MA,
1980!, 2nd ed., pp. 189–190.

2G. R. Gruber, ‘‘Clarification of two important questions in rigid body
mechanics,’’ Am. J. Phys.40, 421–423~1972!.

Fourier transform solution to the semi-infinite resistance ladder
R. M. Dimeo
National Institute of Standards and Technology, 100 Bureau Drive-Stop 8562, Gaithersburg,
Maryland 20899-8562
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In a recent article1 a general method for solving for the
resistance between any two nodes of a number of infinite
resistance lattices using discrete-variable Fourier transforms2

was presented. In this note the same technique is applied to
the semi-infiniteladder network. The mathematical methods
used in the solution to this problem~Fourier transforms and
contour integration! are well within the abilities of the un-
dergraduate physics major. This one-dimensional example is
thus complementary to the two~and higher!-dimensional net-
works presented in the previous article,1 and this example
can be used in a junior-level mathematical methods course.

The input resistance of the semi-infinite ladder network
composed of identical resistors, shown in Fig. 1, is well
known and can be solved by using simple rules of parallel
and series combinations of resistors~see the paper by
Srinivasan3 and references therein!. One simply notes that
adding on another resistive repeat unit to the semi-infinite
ladder will not affect the overall input resistance so that
Req5Req8 . The equivalent resistance is thus found to be equal
to the golden ratio multiplied by the unit of resistance,Req

5@(11A5)/2#R.
This result can be found using the Fourier transform solu-

tion to the difference equation governing the auxiliary resis-
tance ladder shown in Fig. 2~a!. This auxiliary ladder, which
we introduce for mathematical convenience, is infinite in

both directions, whereas the ladder of primary interest is
semi-infinite ~infinite in only one direction!. We can easily
relate the currents and voltages of the infinite ladder to those
of the semi-infinite ladder. If we know that a node voltage,
v0 , results from the input of 1 A of current at the same node,
then the resistance,Req, can be found, as shown in Fig. 2~b!.
Simple application of the current rule to Fig. 2~b! yields

15
v0

R
1

2v0

Req
⇒Req5

2v0R

R2v0
. ~1!

We can determine the node voltage at any node,n, based on
the current entering that node in the infinite ladder of Fig.

Fig. 1. The semi-infinite resistor ladder. The resistance between nodes a and
b is defined as the input resistance for this network.

Fig. 2. Reduction of~a! the infinite resistor ladder to~b! a circuit in terms of
the equivalent resistance between nodes a and b of the semi-infinite ladder
shown in Fig. 1. Note that all of the external currents being fed into the
network in~a! are set to zero excepti 051 A for the specific case of making
the equivalence to the circuit shown in Fig. 1.
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2~a!. Kirchhoff’s current law applied to noden results in the
following difference equation,

Rin53vn2vn112vn21 , ~2!

where i n is current fed into noden supplied by an external
source.

Following the method presented in Atkinson’s paper,1 we
use the discrete-variable Fourier transform pair~also called a
complex Fourier series!,

xn5
1

2p E
0

2p

db X~b!einb↔X~b!5 (
n52`

`

xne2 inb, ~3!

and transform the difference equation fromn to b. The re-
sulting transformed voltage is

v~b!5
RI~b!

322 cosb
, ~4!

with the actual voltage at noden expressed as the integral

vn5
R

2p E
0

2p

db
I ~b!

322 cosb
einb. ~5!

A current of 1 A fed into node 0 as shown in Fig. 2, repre-
sented asi n5dn,0 ~wheredn,k51 if n5k and 0 otherwise!,
results in a transformed current ofI (b)51. Therefore, the
voltage at any node,n, under these circumstances is written
as

vn5
R

2p E
0

2p

db
einb

322 cosb
. ~6!

The voltage at node 0,v0 , can be evaluated readily using
contour integration. The integral which we wish to solve is

v05
R

2p E
0

2p db

322 cosb
, ~7!

with the corresponding contour integral

v05
R

2p i Ruzu51

dz

z

1

32~z1z21!
. ~8!

The integrand has only one pole located in the unit circle,
z5(32A5)/2. Therefore, the integral evaluates tov0

5R/A5, which is the effective resistance of the infinite lad-
der. Finally, we obtain the effective resistance of the semi-
infinite ladder by substitution ofv0 into Eq. ~1! and obtain
Req5@(11A5)/2#R.

1D. Atkinson and F. J. van Steenwijk, ‘‘Infinite resistive lattices,’’ Am. J.
Phys.67, 486–492~1999!.

2A. V. Oppenheim and R. W. Schafer,Discrete-Time Signal Processing
~Prentice–Hall, Englewood Cliffs, NJ, 1989!.

3T. P. Srinivasan, ‘‘Fibonacci sequence, golden ratio, and a network of
resistors,’’ Am. J. Phys.60, 461–462~1992!.

Comment on ‘‘Ideal capacitor circuits and energy conservation,’’
by K. Mita and M. Boufaida †Am. J. Phys. 67 „8…, 737–739 „1999…‡

A. Gangopadhyaya and J. V. Mallow
Department of Physics, Loyola University Chicago, Chicago, Illinois 60626

~Received 19 August 1999; accepted 27 October 1999!

K. Mita and M. Boufaida~hereinafter MB!1 discuss the
puzzle of the missing energy in a capacitor charged from a
power supply~a battery or another capacitor!, with neither
resistance nor inductance in the circuit. In such a circuit, the
power supply appears to deliver energyEPS5qV0 , while the
capacitor only stores12CV0

25 1
2qV0 . The problem disappears

if either inductanceL or resistanceR is introduced into the
circuit, whereL andR can be as small as one likes, but not
zero~a rather peculiar discontinuity!. MB note that the func-
tion of L and/orR is to change a discontinuous, instantaneous
charging process into a continuous one, with a finite time
constant. They then generalize their observation, and show
that any power supply described byV5V0f (t), where f (t)

is a monotonically increasing, continuous, differentiable
function of time, will deliver the ‘‘correct’’ energy. With
0,t,t0 , f (0)50, f (t0)51, andq5CV,

EPS5E dq

dt
V dt5CV0

2E f ~ t !
d f

dt
dt5CV0

2E f d f

5 1
2 CV0

2. ~1!

MB note that the charge across the instantaneously charging
capacitor can be written asq5CV0Q(t), whereQ(t) is the
Heaviside step-function:
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